Apprentissage automatique et compréhension dans le cadre d'un dialogue homme-machine téléphonique à initiative mixte, Corpus-based spoken language und

Divers
Université

Sous la direction de Renato De Mori, Frédéric Béchet Thèse soutenue le 10 décembre 2008: Avignon Les systèmes de dialogues oraux Homme-Machine sont des interfaces entre un utilisateur et des services. Ces services sont présents sous plusieurs formes : services bancaires, systèmes de réservations (de billets de train, d'avion), etc. Les systèmes de dialogues intègrent de nombreux modules notamment ceux de reconnaissance de la parole, de compréhension, de gestion du dialogue et de synthèse de la parole. Le module qui concerne la problématique de cette thèse est celui de compréhension de la parole. Le processus de compréhension de la parole est généralement séparé du processus de transcription. Il s'agit, d'abord, de trouver la meilleure hypothèse de reconnaissance puis d'appliquer un processus de compréhension. L'approche proposée dans cette thèse est de conserver l'espace de recherche probabiliste tout au long du processus de compréhension en l'enrichissant à chaque étape. Cette approche a été appliquée lors de la campagne d'évaluation MEDIA. Nous montrons l'intérêt de notre approche par rapport à l'approche classique. En utilisant différentes sorties du module de RAP sous forme de graphe de mots, nous montrons que les performances du décodage conceptuel se dégradent linéairement en fonction du taux d'erreurs sur les mots (WER). Cependant nous montrons qu'une approche intégrée, cherchant conjointement la meilleure séquence de mots et de concepts, donne de meilleurs résultats qu'une approche séquentielle. Dans le souci de valider notre approche, nous menons des expériences sur le corpus MEDIA dans les mêmes conditions d'évaluation que lors de la campagne MEDIA. Il s'agit de produire des interprétations sémantiques à partir des transcriptions sans erreur. Les résultats montrent que les performances atteintes par notre modèle sont au niveau des performances des systèmes ayant participé à la campagne d'évaluation. L'étude détaillée des résultats obtenus lors de la campag

Il n'y a aucune évaluation pour l'instant.


Soyez le premier à l'évaluer

Donnez votre évaluation
Apprentissage automatique et compréhension dans le cadre d'un dialogue homme-machine téléphonique à initiative mixte, Corpus-based spoken language und
* Champs obligatoires
Votre commentaire
Vos notes
Clarté du contenu
Utilité du contenu
Qualité du contenu